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The temporal evolution of the fluid circulation generated by a buoyancy force when two-dimensional �2D�
arrays of 2D thermals are released into a quiescent incompressible fluid is studied through the results of
numerous lattice Boltzmann simulations. It is observed that the circulation magnitude grows to a maximum
value in a finite time. When both the maximum circulation and the time at which it occurs are nondimensiona-
lised by appropriately defined characteristic scales, it is shown that two simple Prandtl number �Pr� dependent
scaling relations can be devised that fit these data very well over nine decades of Pr spanning the viscous and
diffusive regimes and six decades of Rayleigh number �Ra� in the low Ra regime. Also, obtained analytically
is the exact result that circulation magnitude continues to grow in time for a 2D laminar or turbulent single
buoyant �3D� vortex ring in an infinite unbounded fluid.
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Buoyancy generated vorticity is an attractive area of study
for its influential role in various fields of science and engi-
neering, its relevance to mixing and, undoubtedly, for the
aesthetically pleasing nature of its visualized flow structure
�see, for example, �1–6� and the references therein�. Buoyant
vortices are generated when plumes and thermals have dif-
ferent temperatures to an ambient fluid. Following some
classical work on buoyant vortex rings and starting plumes
�7,8�, detailed studies on a single starting plume have gener-
ated some understanding, though not yet complete, of the
interesting phenomena of mushroom-type vortex head gen-
eration and its pinch-off �see, for example, �9��. A number of
studies on thermals have focused mainly on the time evolu-
tion of the linear dimension of the thermal and its penetration
in the streamwise direction �10–12�. Lundgren et al. �10�
have also provided some information on the time evolution
of the circulation. Despite this considerable interest, some
basic aspects of buoyancy generated vorticity remain to be
elucidated, including the presence or otherwise of quantita-
tive scaling laws in different flow regimes. Such scaling laws
may be used to predict aspects of the behavior of a system
without performing full solutions of the system’s governing
equations.

In this paper, the results of numerous computer simula-
tions using the lattice Boltzmann method �LBM� are used to
investigate the universal scaling behavior associated with the
circulation generated by buoyant forces when two-
dimensional �2D� thermals are released into a quiescent in-
compressible fluid. Also presented is an analytical derivation
showing that for a 3D buoyant vortex ring formed by releas-
ing a thermal in an infinite domain of a quiescent fluid the
magnitude of the circulation grows continuously in time for
both laminar and turbulent cases.

In terms of the Cartesian coordinate system �x ,y ,z�
each of the simulated 2D systems comprised a 2Lx�2Ly
�1 sized domain of incompressible fluid which was initially
quiescent and of uniform density � and temperature T0. The
center of the domain coincided with the origin of a Cartesian

coordinate system. At time t=0 a circular �to within the lat-
tice resolution� thermal of initial radius R0�Lx ,Ly and tem-
perature T1�T0 was introduced into the center of the do-
main. Cyclic boundary conditions were applied at all lattice
boundaries making the simulation equivalent to that of an
infinite system initialized with an infinite number of circular
thermals positioned at the nodes of a rectangular array such
that their centers were separated by 2Lx in the x direction and
2Ly in the y direction. The temperature difference causes the
thermals to move in the negative �downward� y direction
which coincides with the direction of acceleration due to
gravity −gêy, where êy is the unit vector in the y direction.
This motion is caused by the buoyancy force acting on the
thermal due to its density being different from that of the
surrounding fluid. For t�0 the temperature of the thermal
diffuses and convects as it descends and a vorticity field with
nonzero component �z�x ,y , t����x ,y , t�=�∧u�x ,y , t�
=�xuy�x ,y , t�−�yux�x ,y , t� is generated, where ux and uy are
the fluid velocity components in the x and y directions, re-
spectively. This system is governed by the Navier-Stokes
equations with the Boussinesq approximation, written as

�iui = 0,

Dtui = − �−1�ip − �iyg + �g�T − T0��iy + 	� j
2ui,

and the equation for temperature field T

DtT = 
� j
2T ,

where summation notation applies to the indices i and j
which take the values x and y, Dt=�t+ui�i, �ij is the Kro-
necker delta function, p is the pressure, 	 is the kinematic
viscosity, and 
 is the thermal diffusivity. The solution
of these equations with cyclic boundary conditions at
x=Lx ,−Lx and y=Ly ,−Ly and initial temperatures T1 and T0
describes the flow field generated by the infinite rectangular
array of thermals. It should be noted that Lx→� and
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Ly→� represents the situation of a single isolated thermal in
an infinite fluid.

The LBM used to solve the governing equations was a
multi-relaxation-time algorithm which sets all nonhydrody-
namic modes to zero at each time step. It is based on the
LBM for the Boussinesq equations described in �13�. At
regular intervals during the simulations measurements were
made of the circulation ��t� calculated over the x�0 half-
domain and defined by ��t�=�−Ly

Ly �0
Lx��x ,y , t�dx dy. It was

observed in all simulations that the circulation magnitude
��t� grew to a maximum value, denoted �max, in a time de-
noted by tmax, and then decayed. The parameters influencing
the phenomena are g�
T, 	, 
, R0, Lx, and Ly �here,

T= �T0−T1��. In general

�max � �max�g�
T,	,
,R0,Lx,Ly� , �1�

tmax � tmax�g�
T,	,
,R0,Lx,Ly� . �2�

To reveal the scaling relations for �max and tmax a total of 211
individual simulations were performed using various combi-
nations of the parameters g�
T, 	, 
, R0, Lx, and Ly. Sets of
simulations were performed in which all variables except
one were held constant and the values �max and tmax were
measured and recorded. The simulations were run for suffi-
cient times, between 3000 and 160 000 time steps depending
on the parameter set, to enable the measurement of the initial
growth of circulation and its subsequent decay. The param-
eter ranges, in lattice Boltzmann units, were as follows:
10−5��g
T�5�10−5, 10−4�	�19/6, 10−4�
�1,
2 /���R0�4�5/�, 30�Lx�500, and 30�Ly �500 �14�.
These dimensional parameters where combined to yield
dimensionless parameters covering a wide range of
values. Specifically, the Prandtl number Pr=	 /
 ranged
over nine decades �10−4�Pr�104�; the Rayleigh number
Ra=g�
TR0

3 /	
 over six decades �1.4�10−5�Ra�38.5�;
and the aspect ratios �x=Lx /R0 and �y =Ly /R0, over nearly
two decades �7.9��x,y �443�. The range of Pr crosses from
the low to high �diffusive to viscous� Pr regimes; the range
of Ra, however, remains in the low Ra regime.

First, the dependency of the parameters g�
T, R0, Lx, or
Ly was investigated by varying just one of these parameters
and examining plots of �max and tmax versus the varied pa-
rameter. This showed the following scaling relations to hold:
�max	g�
T	R0

2	Lx	Ly
0 and tmax	�g�
T�0	R0

0	Lx
2

	Ly
0. The dependency on 	 or 
 was more complicated, as

varying just one of these and examining plots of �max and
tmax versus the varied parameter showed behavior that de-
pended on Pr. These relations suggest appropriate character-
istic scales for circulation and time are �0�LxR0

2g�
T /	
and t0�Lx

2 /	, where the viscosity is used in the denominator
to ensure the correct dimensionality �note that one could
have equally well used 
 instead of 	�. These characteristic
scales, �0 and t0, thus contain the correct dependency of �max
and tmax on all the parameters except 	 and 
. Along with �1�
and �2�, this suggests that the maximum circulation and the
time of its occurrence may be written in the following
dimensionless form which depends only on Pr:

�max/�0 = f1�Pr� , �3�

tmax/t0 = f2�Pr� . �4�

The functions f1�Pr� and f2�Pr� are as yet unknown, but,
to see the scaling relations, �max/�0 and tmax/ t0 are plotted
against Pr on log-log scales in Fig. 1. The abscissa covers
nine decades of Pr and the ordinate, about four decades of
�max/�0 and tmax/ t0. The figure exhibits certain power laws
which may be written as �max/�0�Prn and tmax/ t0�Prm,
where the values of n and m are observed to be different in
different Pr regimes. The plots in Fig. 1 suggest that the
values of n and m tend to constant values in the limits of
high and low Pr. Assuming this to be the case, the following
scaling relations, chosen for their simple form and correct
asymptotic behavior, were fitted to the data

�max/�0 = a�Pr−nl + Pr−nh�−1, �5�

tmax/t0 = b�Pr−ml + Pr−mh�−1, �6�

where a, nl, nh, b, ml, and mh are constant fitting parameters.
A nonlinear least-squares Marquardt-Levenberg algorithm
was used to fit the data. The fitted scaling relations are shown

FIG. 1. �Color online� Dimensionless �max/�0 and tmax/ t0

plotted over six decades of Prandtl number. The black lines are the
best fits to the functions using �5� and �6�.
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as black lines on the plots in Fig. 1 and it can be seen
that they do indeed give extremely good fits to the
data across all the Pr regimes. The fitted values of the fitting
parameters are, with standard errors, a=0.4936±0.0046, nl
=0.9458±0.0015, nh=0.0539±0.0014, b=0.20912±0.0015,
ml=0.8770±0.0013, and mh=0.1275±0.0012. To within
three standard errors all of these may be given as the follow-
ing simple fractions: a=1/2, nl=19/20, nh=1/20, b=7/34,
ml=7/8, and mh=1/8. It is an interesting observation, for
which we have no explanation, that the fitted values suggest
that nl=1−nh and ml=1−mh. This suggests single exponent
scalings of the form �max/�0=aPrnh�1+Pr2nh−1�−1 and
tmax/ t0=bPrmh�1+Pr2mh−1�−1.

The dependencies on the other dimensionless parameters,
Ra and the aspect ratio �x=Lx /R0, can be highlighted by
writing the scalings relations �3� and �4� as �max/

=�xRaf1�Pr� and 	tmax/R0

2=�x
2f2�Pr�. The accuracy of scal-

ings obtained for �max and tmax are further confirmed by the
plots in Figs. 2 and 3 of the alternatively nondimensionalized

�max and tmax plotted against the two dimensionless param-
eters Ra and �x. In both figures the fitted scaling relations
are shown as black lines, and again, the fits are seen to be
extremely good.

The scaling relations given in �5� and �6� suggest that in
an infinite domain, that is to say, Lx→�, �max and tmax tend
to infinity. A theoretical justification for this observation is
now provided. The equation for the nonzero component of
vorticity � can be written as

�t� + �x�ux�� + �y�uyomega� = 	��x
2 + �y

2�� + �g�xT ,

and so the equation governing the circulation in an infinite
domain can be written as

�t� = �g

−�

�

��T0 − T�x=0�dy − 	

−�

�

���x��x=0�dy . �7�

The first term on the right-hand side �rhs� of �7� is the buoy-
ancy term, which is always positive as T0�T1 forces ��T0

−T�x=0��0. The second term on the rhs of �7� is negative due

FIG. 2. �Color online� Particular nondimensionalized forms of
�max and tmax plotted over six decades of Rayleigh number. The
black lines are �max/
�xf1�Pr�=Ra and 	tmax/�x

2R0
2f2�Pr�=1,

respectively.

FIG. 3. �Color online� Particular nondimensionalized forms of
�max and tmax plotted over two decades of the aspect ratio �x. The
black lines are �max/
Raf1�Pr�=�x and 	tmax/R0

2f2�Pr�=�x
2,

respectively.
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to the fact that ��x��x=0�0 because of the change in the sign
of � near x=0. Also, the magnitude of this second term is
zero at t=0 and starts to increase as the vorticity field is
generated in the domain. In the limit of the viscous force
being small compared to the buoyancy force, �t� remains
positive and so � will continue to increase without limit.
Although the above argument for a continuous increase of �
requires 	 to be small, this is not a restriction in the case of
an axisymmetric buoyant vortex ring in an infinite domain as
is now discussed.

Consider a domain of quiescent fluid of uniform density �
and temperature T0 in a cylindrical coordinate system �r ,� ,z�
having 0�r��, −��z��, and 0���2� and accelera-
tion due to gravity g acting in the negative z direction. At
time t=0 a spherical volume of fluid of radius R0 and tem-
perature T1�T0 is introduced into the domain with its center
coinciding with the origin of the coordinate system. For time
t�0, the thermal starts descending along the z axis due to
the buoyancy force and a vortex ring of buoyant thermal
fluid is generated. Due to the angular symmetry in the �
direction, this system can be analyzed in 2D �r ,z� coordi-
nates. By employing the Boussinesq approximation for
the buoyancy force in the Navier-Stokes equations and
using ��=�zur−�ruz to denote the nonzero vorticity
component, the governing equation for the circulation
��t�=�0

��−�
� �� dz dr of the 2D vortex ring can be written as

�t� = �g

−�

�

�T�r = 0,z,t� − T0�dz , �8�

in which the viscous term does not arise due to the symmetry
of the problem. Indeed, starting from the ensemble averaged

�denoted by �·�� Navier-Stokes equations and applying vari-
ous symmetry conditions to the ensemble averaged flow
properties, one can show that �t���=�g�−�

� ��T�r=0,z , t��
−T0�dz, where ���=�0

�dr�−�
� dz���� is the ensemble average

of the instantaneous circulation �= ���+�� and �� represents
the turbulent fluctuations in � over the ���. Thus, because
T�r=0,z , t�−T0�0, or �T�r=0,z , t��−T0�0 for a turbulent
system, �8� suggests that in the case of a descending vortex
ring in an infinite domain both � and ��� continue to de-
crease �or ��� and ����� continue to increase� from their initial
values of zero.

In this paper it was shown that, for an infinite system
comprising an infinite number of 2D thermals initially ar-
ranged in a rectangular array, the magnitude of the buoyancy
generated circulation ��t� reaches a maximum value �max at
a finite time tmax. Accurate scaling relations for �max and tmax,
covering nine decades of Pr and six decades of Ra, were
inferred from LBM simulations. Theoretical justification has
been provided to support the observation, based on the scal-
ing relations, that �max increases in proportion to the size of
the domain. Furthermore, exact analytical results were de-
rived for a single buoyancy generated vortex ring in both the
laminar and turbulent cases. These exact results suggest that
for a buoyant vortex ring in an infinite unbounded domain
the magnitude of �, or ��� if the vortex ring is turbulent, will
continue to grow indefinitely. The implication of this in pre-
dicting the growth of size R of the vortex ring can be exhib-
ited by the second term involving d� /dt in ���dR2 /dt
+��R2d� /dt=Fb, where Fb is constant buoyancy force act-
ing on the buoyant fluid. In fact, Turner �7� assumed � was
constant and neglected this second term when predicting the
growth of a vortex ring.
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